An artificial bee colony approach for clustering

نویسندگان

  • Changsheng Zhang
  • Dantong Ouyang
  • Jiaxu Ning
چکیده

Clustering is a popular data analysis and data mining technique. In this paper, an artificial bee colony clustering algorithm is presented to optimally partition N objects into K clusters. The Deb’s rules are used to direct the search direction of each candidate. This algorithm has been tested on several well-known real datasets and compared with other popular heuristics algorithm in clustering, such as GA, SA, TS, ACO and the recently proposed K–NM–PSO algorithm. The computational simulations reveal very encouraging results in terms of the quality of solution and the processing time required. 2009 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Artificial Bee Colony Inspired Clustering Solution to Prolong Lifetime of Wireless Sensor Networks

It is very difficult and expensive to replace sensor node battery in wireless sensor network in many critical conditions such as bridge supervising, resource exploration in hostile locations, and wildlife safety, etc. The natural choice in such situations is to maximize network lifetime. One such approach is to divide the sensing area of wireless sensor network into clusters to achieve high ene...

متن کامل

An Improved K-Means with Artificial Bee Colony Algorithm for Clustering Crimes

Crime detection is one of the major issues in the field of criminology. In fact, criminology includes knowing the details of a crime and its intangible relations with the offender. In spite of the enormous amount of data on offenses and offenders, and the complex and intangible semantic relationships between this information, criminology has become one of the most important areas in the field o...

متن کامل

BeeID: intrusion detection in AODV-based MANETs using artificial Bee colony and negative selection algorithms

Mobile ad hoc networks (MANETs) are multi-hop wireless networks of mobile nodes constructed dynamically without the use of any fixed network infrastructure. Due to inherent characteristics of these networks, malicious nodes can easily disrupt the routing process. A traditional approach to detect such malicious network activities is to build a profile of the normal network traffic, and then iden...

متن کامل

Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring

In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...

متن کامل

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

Dynamic clustering with improved binary artificial bee colony algorithm

One of the most well-known binary (discrete) versions of the artificial bee colony algorithm is the similarity measure based discrete artificial bee colony, which was first proposed to deal with the uncapacited facility location (UFLP) problem. The discrete artificial bee colony simply depends on measuring the similarity between the binary vectors through Jaccard coefficient. Although it is acc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2010